Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 8 de 8
Filtre
1.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.08.03.454782

Résumé

Antibody responses serve as the primary protection against SARS-CoV-2 infection through neutralization of viral entry into cells. We have developed a two-dimensional multiplex bead binding assay (2D-MBBA) that quantifies multiple antibody isotypes against multiple antigens from a single measurement. Here, we applied our assay to profile IgG, IgM and IgA levels against the spike antigen, its receptor-binding domain and natural and designed mutants. Machine learning algorithms trained on the 2D-MBBA data substantially improve the prediction of neutralization capacity against the authentic SARS-CoV-2 virus of serum samples of convalescent patients. The algorithms also helped identify a set of antibody isotype-antigen datasets that contributed to the prediction, which included those targeting regions outside the receptor-binding interface of the spike protein. We applied the assay to profile samples from vaccinated, immune-compromised patients, which revealed differences in the antibody profiles between convalescent and vaccinated samples. Our approach can rapidly provide deep antibody profiles and neutralization prediction from essentially a drop of blood without the need of BSL-3 access and provides insights into the nature of neutralizing antibodies. It may be further developed for evaluating neutralizing capacity for new variants and future pathogens.


Sujets)
COVID-19
2.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.06.02.21257804

Résumé

Patients with hematologic malignancies are a high priority for SARS-CoV-2 vaccination, yet the benefit they will derive is uncertain. We investigated the humoral response to vaccination in 53 non-Hodgkin lymphoma (NHL), Hodgkin lymphoma (HL), or CLL patients. Peripheral blood was obtained 2 weeks after first vaccination and 6 weeks after second vaccination for antibody profiling using the multiplex bead-binding assay. Serum IgG, IgA, and IgM antibody levels to the spike specific receptor binding domain (RBD) were evaluated as a measure of response. Subsequently, antibody-positive serum were assayed for neutralization capacity against authentic SARS-CoV-2. Histology was 68% lymphoma and 32% CLL; groups were: patients receiving anti- CD20-based therapy (45%), monitored with disease (28%), receiving BTK inhibitors (19%), or chemotherapy (all HL) (8%). SARS-CoV-2 specific RBD IgG antibody response was decreased across all NHL and CLL groups: 25%, 73%, and 40%, respectively. Antibody IgG titers were significantly reduced (p < 0.001) for CD20 treated and targeted therapy patients, and (p = 0.003) for monitored patients. In 94% of patients evaluated after first and second vaccination, antibody titers did not significantly boost after second vaccination. Only 13% of CD20 treated and 13% of monitored patients generated neutralizing antibodies to SARS-CoV-2 with ICD50s 135 to 1767, and 445 and > 10240. This data has profound implications given the current guidance relaxing masking restrictions and for timing of vaccinations. Unless immunity is confirmed with laboratory testing, these patients should continue to mask, socially distance, and to avoid close contact with non-vaccinated individuals.


Sujets)
Lymphomes , Leucémie chronique lymphocytaire à cellules B , Tumeurs hématologiques , Maladie de Hodgkin , Lymphome malin non hodgkinien
3.
ssrn; 2021.
Preprint Dans Anglais | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3838993

Résumé

Both SARS-CoV-2 infection and vaccination elicit potent immune responses. A number of studies have described immune responses to SARS-CoV-2 infection. However, beyond antibody production, immune responses to COVID-19 vaccines remain largely uncharacterized. Here, we performed multimodal single-cell sequencing on peripheral blood of patients with acute COVID-19 and healthy volunteers before and after receiving the SARS-CoV-2 BNT162b2 mRNA vaccine to compare the immune responses elicited by the virus and by this vaccine. Phenotypic and transcriptional profiling of immune cells, coupled with reconstruction of the B and T cell antigen receptor rearrangement of individual lymphocytes, enabled us to characterize and compare the host responses to the virus and to defined viral antigens. While both infection and vaccination induced robust innate and adaptive immune responses, our analysis revealed significant qualitative differences between the two types of immune challenges. In COVID-19 patients, immune responses were characterized by a highly augmented interferon response which was largely absent in vaccine recipients. Increased interferon signaling likely contributed to the observed dramatic upregulation of cytotoxic genes in the peripheral T cells and innate-like lymphocytes in patients but not in immunized subjects. Analysis of B and T cell receptor repertoires revealed that while the majority of clonal B and T cells in COVID-19 patients were effector cells, in vaccine recipients clonally expanded cells were primarily circulating memory cells. Importantly, the divergence in immune subsets engaged, the transcriptional differences in key immune populations, and the differences in maturation of adaptive immune cells revealed by our analysis have far-ranging implications for immunity to this novel pathogen.Funding: We are grateful for support of this work from NYU Grossman School of Medicine. Work in Dr. Koralov’s laboratory was further supported by the NIH R01 grant (HL-125816), LEO Foundation Grant (LF-OC-20-000351), NYU Cancer Center Pilot Grant (P30CA016087), the Judith and Stewart Colton Center for Autoimmunity Pilot grant. Presented work was also supported by NIH grant R21 AI158997, R01 CA194864 and R01 CA212608 to S.K.; NIH grants AI114852 and AI082630 to R.S.H.; and AI148574 to M.J.M. TBB and NØ are supported by the Danish Cancer Society (Kræftens Bekæmpelse), the Danish Council for Independent Research (Danmarks Frie Forskningsfond) and the LEO Foundation. Declaration of Interest: MJM reported potential competing interests: laboratory research and clinical trials contracts with Lilly, Pfizer (exclusive of the current work), and Sanofi for vaccines or MAB vs SARS-CoV-2; contract funding from USG/HHS/BARDA for research specimen characterization and repository; research grant funding from USG/HHS/NIH for SARS-CoV-2 vaccine and MAB clinical trials; personal fees from Meissa Vaccines, Inc. and Pfizer for Scientific Advisory Board service.Ethical Approval: All studies were approved by the NYU Institutional Review Board (IRB #s 18-02035, 18-02037, 20-00463). This study was performed in accordance with the Declaration of Helsinki. All volunteers provided written informed consent prior to enrollment.


Sujets)
COVID-19
4.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.04.20.21255677

Résumé

Both SARS-CoV-2 infection and vaccination elicit potent immune responses. A number of studies have described immune responses to SARS-CoV-2 infection. However, beyond antibody production, immune responses to COVID-19 vaccines remain largely uncharacterized. Here, we performed multimodal single-cell sequencing on peripheral blood of patients with acute COVID- 19 and healthy volunteers before and after receiving the SARS-CoV-2 BNT162b2 mRNA vaccine to compare the immune responses elicited by the virus and by this vaccine. Phenotypic and transcriptional profiling of immune cells, coupled with reconstruction of the B and T cell antigen receptor rearrangement of individual lymphocytes, enabled us to characterize and compare the host responses to the virus and to defined viral antigens. While both infection and vaccination induced robust innate and adaptive immune responses, our analysis revealed significant qualitative differences between the two types of immune challenges. In COVID-19 patients, immune responses were characterized by a highly augmented interferon response which was largely absent in vaccine recipients. Increased interferon signaling likely contributed to the observed dramatic upregulation of cytotoxic genes in the peripheral T cells and innate-like lymphocytes in patients but not in immunized subjects. Analysis of B and T cell receptor repertoires revealed that while the majority of clonal B and T cells in COVID-19 patients were effector cells, in vaccine recipients clonally expanded cells were primarily circulating memory cells. Importantly, the divergence in immune subsets engaged, the transcriptional differences in key immune populations, and the differences in maturation of adaptive immune cells revealed by our analysis have far-ranging implications for immunity to this novel pathogen.


Sujets)
COVID-19
5.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-266050.v1

Résumé

Mortality among patients with COVID-19 and respiratory failure is high and there are no known lower airway biomarkers that predict clinical outcome. We investigated whether bacterial respiratory infections and viral load were associated with poor clinical outcome and host immune tone. We obtained bacterial and fungal culture data from 589 critically ill subjects with COVID-19 requiring mechanical ventilation. On a subset of the subjects that underwent bronchoscopy, we also quantified SARS-CoV-2 viral load, analyzed the microbiome of the lower airways by metagenome and metatranscriptome analyses and profiled the host immune response. We found that isolation of a hospital-acquired respiratory pathogen was not associated with fatal outcome. However, poor clinical outcome was associated with enrichment of the lower airway microbiota with an oral commensal ( Mycoplasma salivarium ), while high SARS-CoV-2 viral burden, poor anti-SARS-CoV-2 antibody response, together with a unique host transcriptome profile of the lower airways were most predictive of mortality. Collectively, these data support the hypothesis that 1) the extent of viral infectivity drives mortality in severe COVID-19, and therefore 2) clinical management strategies targeting viral replication and host responses to SARS-CoV-2 should be prioritized.


Sujets)
COVID-19 , Infections de l'appareil respiratoire , Insuffisance respiratoire
6.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.02.23.21252221

Résumé

Mortality among patients with COVID-19 and respiratory failure is high and there are no known lower airway biomarkers that predict clinical outcome. We investigated whether bacterial respiratory infections and viral load were associated with poor clinical outcome and host immune tone. We obtained bacterial and fungal culture data from 589 critically ill subjects with COVID-19 requiring mechanical ventilation. On a subset of the subjects that underwent bronchoscopy, we also quantified SARS-CoV-2 viral load, analyzed the microbiome of the lower airways by metagenome and metatranscriptome analyses and profiled the host immune response. We found that isolation of a hospital-acquired respiratory pathogen was not associated with fatal outcome. However, poor clinical outcome was associated with enrichment of the lower airway microbiota with an oral commensal (Mycoplasma salivarium), while high SARS-CoV-2 viral burden, poor anti-SARS-CoV-2 antibody response, together with a unique host transcriptome profile of the lower airways were most predictive of mortality. Collectively, these data support the hypothesis that 1) the extent of viral infectivity drives mortality in severe COVID-19, and therefore 2) clinical management strategies targeting viral replication and host responses to SARS-CoV-2 should be prioritized.


Sujets)
COVID-19 , Infections de l'appareil respiratoire , Insuffisance respiratoire
7.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.11.03.365270

Résumé

The COVID-19 pandemic remains a global threat, and host immunity remains the main mechanism of protection against the disease. The spike protein on the surface of SARS-CoV-2 is a major antigen and its engagement with human ACE2 receptor plays an essential role in viral entry into host cells. Consequently, antibodies targeting the ACE2-interacting surface (ACE2IS) located in the receptor-binding domain (RBD) of the spike protein can neutralize the virus. However, the understanding of immune responses to SARS-CoV-2 is still limited, and it is unclear how the virus protects this surface from recognition by antibodies. Here, we designed an RBD mutant that disrupts the ACE2IS and used it to characterize the prevalence of antibodies directed to the ACE2IS from convalescent sera of 94 COVID19-positive patients. We found that only a small fraction of RBD-binding antibodies targeted the ACE2IS. To assess the immunogenicity of different parts of the spike protein, we performed in vitro antibody selection for the spike and the RBD proteins using both unbiased and biased selection strategies. Intriguingly, unbiased selection yielded antibodies that predominantly targeted regions outside the ACE2IS, whereas ACE2IS-binding antibodies were readily identified from biased selection designed to enrich such antibodies. Furthermore, antibodies from an unbiased selection using the RBD preferentially bound to the surfaces that are inaccessible in the context of whole spike protein. These results suggest that the ACE2IS has evolved less immunogenic than the other regions of the spike protein, which has important implications in the development of vaccines against SARS-CoV-2.


Sujets)
COVID-19
8.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.08.15.252353

Résumé

Understanding antibody responses to SARS-CoV-2 is indispensable for the development of containment measures to overcome the current COVID-19 pandemic. Here, we determine the ability of sera from 101 recovered healthcare workers to neutralize both authentic SARS-CoV-2 and SARS-CoV-2 pseudotyped virus and address their antibody titers against SARS-CoV-2 nucleoprotein and spike receptor-binding domain. Interestingly, the majority of individuals have low neutralization capacity and only 6% of the healthcare workers showed high neutralizing titers against both authentic SARS-CoV-2 virus and the pseudotyped virus. We found the antibody response to SARS-CoV-2 infection generates antigen-specific isotypes as well as a diverse combination of antibody isotypes, with high titers of IgG, IgM and IgA against both antigens correlating with neutralization capacity. Importantly, we found that neutralization correlated with antibody titers as quantified by ELISA. This suggests that an ELISA assay can be used to determine seroneutralization potential. Altogether, our work provides a snapshot of the SARS-CoV-2 neutralizing antibody response in recovered healthcare workers and provides evidence that possessing multiple antibody isotypes may play an important role in SARS-CoV-2 neutralization.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche